ON THE COMMUTATIVITY OF THE ALGEBRA OF INVARIANT DIFFERENTIAL OPERATORS ON CERTAIN NILPOTENT HOMOGENEOUS SPACES

HIDÉNORI FUJIWARA, GÉRARD LION, AND SALAH MEHDI

ABSTRACT. Let G be a simply connected connected real nilpotent Lie group with Lie algebra \mathfrak{g} , H a connected closed subgroup of G with Lie algebra \mathfrak{h} and $\beta \in \mathfrak{h}^*$ satisfying $\beta([\mathfrak{h},\mathfrak{h}]) = \{0\}$. Let χ_β be the unitary character of H with differential $2\sqrt{-1}\pi\beta$ at the origin. Let $\tau \equiv Ind_H^G\chi_\beta$ be the unitary representation of G induced from the character χ_β of H. We consider the algebra $\mathcal{D}(G,H,\beta)$ of differential operators invariant under the action of G on the bundle with basis $H\backslash G$ associated to these data. We consider the question of the equivalence between the commutativity of $\mathcal{D}(G,H,\beta)$ and the finite multiplicities of τ . Corwin and Greenleaf proved that if τ is of finite multiplicities, this algebra is commutative. We show that the converse is true in many cases.

1. Notations and formulation of the question

Let G be a simply connected connected real nilpotent Lie group with Lie algebra \mathfrak{g} and H a connected closed subgroup of G with Lie algebra \mathfrak{h} . For $l \in \mathfrak{g}^*$, we denote by $\mathfrak{g}(l)$ the Lie algebra of the stabilizer G(l) of l under the co-adjoint action Ad^* of G on \mathfrak{g}^* . For $\beta \in \mathfrak{h}^*$ satisfying $\beta([\mathfrak{h},\mathfrak{h}]) = \{0\}$, the homomorphism β induces a character χ_β of H with $2\sqrt{-1}\pi\beta$ as differential at the origin. We then form the unitary induced representation $\tau \equiv Ind_H^G\chi_\beta$ of G in \mathcal{H}_τ realized, in the usual way, as the completion of a vector subspace of $C^\infty(G,H,\beta)$, namely the vector space of the C^∞ complex functions f on G satisfying the following covariance relation:

$$(1.1) f(hg) = \chi_{\beta}(h)f(g) \ \forall h \in H \ \forall g \in G.$$

The action of G is given by right translations:

We denote by $\mathcal{K}(G, H, \tau)$ the subspace of $C^{\infty}(G, H, \beta)$ of elements with compact support modulo H. Then the norm $|| ||_{\tau}$ on $\mathcal{K}(G, H, \tau)$ is given by

(1.3)
$$||f||_{\tau}^{2} = \int_{H \setminus G} |f(g)|^{2} d\dot{g}$$

where dg denotes a right G-invariant measure on $H\backslash G$. The Hilbert space \mathcal{H}_{τ} is just the completion of $\mathcal{K}(G,H,\tau)$ relative to this norm. Moreover, the unitary

Received by the editors March 17, 2000.

²⁰⁰⁰ Mathematics Subject Classification. Primary 43A85, 22E27, 22E30.

representation of G in \mathcal{H}_{τ} decomposes in a continuous sum of unitary irreducible representations of G,

(1.4)
$$\tau \simeq \int_{\hat{G}}^{\oplus} m(\pi)\pi d\mu(\pi)$$

where $m(\pi)$ denotes the multiplicity of π and $d\mu$ a Plancherel measure on the unitary dual \hat{G} of G. Then we know [3], [11] that for almost all π in \hat{G} , the multiplicities $m(\pi)$ appearing in (1.4) either are finite and admit a uniform bound, or are all infinite. In the first case, we say that τ is of finite multiplicities.

Finally, let $\mathcal{D}(G, H, \beta)$ be the algebra of linear differential operators leaving $C^{\infty}(G, H, \beta)$ invariant and commuting with τ , that is

$$D \in \mathcal{D}(G, H, \beta) \Leftrightarrow D(\tau(g)f) = \tau(g)(Df) \ \forall g \in G \ \forall f \in C^{\infty}(G, H, \beta).$$

Corwin and Greenleaf established in [5] the commutativity of $\mathcal{D}(G, H, \beta)$ when τ is of finite multiplicities and they asked the question:

(*) Is
$$\tau$$
 of finite multiplicities if $\mathcal{D}(G, H, \beta)$ is commutative?

Before we turn to the study of this question, we first recall some facts about parametrization of unipotent actions on vector spaces [12].

2. Orbits of
$$H$$
 in \mathfrak{g}^*

Suppose we are given a m-dimensional vector space V admitting a unipotent action of H. Let $\{Y_1; \dots; Y_m\}$ be a basis of V such that the subspaces $V_j \equiv \bigoplus_{i=j+1}^m \mathbb{R}Y_i$ of V are H-stable for all $0 \leq j \leq m$ with $V_m = \{0\}$. We consider the multi-index $e(\psi)$ defined by $(e_0(\psi); \dots; e_m(\psi))$ for all $\psi \in V$, where $e_j(\psi)$ is the dimension of the H-orbit of the projection of ψ on V/V_j . We then denote by Σ the set of all possible multi-indexes, that is

(2.1)
$$\Sigma = \{ e \in \mathbb{N}^{m+1} \mid \exists \psi \in V, \ e = e(\psi) \}.$$

This defines a stratification of V in layers U_e of H-orbits, more precisely [4]:

(2.2)
$$V = \bigcup_{e \in \Sigma} U_e \text{ where for } e \in \Sigma \text{ and } U_e = \{ \psi \in V \mid e(\psi) = e \}.$$

It happens that among these layers U_e , $e \in \Sigma$, there exists one, and only one, which is a non-empty Zariski open subset of V. We shall call it the generic layer (associated to the action of H on V), and we will denote it by V^{gene} . Note that V^{gene} is just the subset of V of elements for which the dimensions of H-orbits in V/V_j are maximal for $0 \le j \le m$. We shall say that a ψ in V^{gene} is generic in V, and the dimension of the orbit $H \cdot \psi$ will be called the generic dimension of H-orbits in V.

In the sequel, we will consider a particular V. More precisely, fix a sequence $\{0\} = \mathfrak{g}_0 \subset \mathfrak{g}_1 \subset \cdots \subset \mathfrak{g}_n = \mathfrak{g}$ of subalgebras of \mathfrak{g} satisfying the following conditions:

- the subalgebras \mathfrak{g}_i are of dimension i; they are normalised by the action of H.
- for a certain index p, the subalgebra \mathfrak{g}_p coincides with \mathfrak{h} .

We choose a weak Malcev basis $\{X_i, 1 \leq i \leq n\}$ of \mathfrak{g} through \mathfrak{h} associated to the sequence $(\mathfrak{g}_i, 0 \leq i \leq n)$ such that for all $i \in \{1, ..., n\}$, the vectors $\{X_j, 1 \leq j \leq i\}$ form a basis of \mathfrak{g}_i . We say that $\{X_i, 1 \leq i \leq n\}$ (resp. $(\mathfrak{g}_i, 0 \leq i \leq n)$) is a weak Malcev basis (resp. sequence of subalgebras) of \mathfrak{g} through \mathfrak{h} . As usual we denote by $\{X_i^*, 1 \leq i \leq n\}$ the dual basis of $\{X_i, 1 \leq i \leq n\}$. Then we put $V = \mathfrak{g}^*$ and

 $V_j = \mathfrak{g}_j^{\perp} = \bigoplus_{k=j+1}^n \mathbb{R} X_k^*$ for $1 \leq j \leq n$. Here we consider the unipotent action of H on $V = \mathfrak{g}^*$ given by the restriction to H of the co-adjoint action of G on \mathfrak{g}^* . In particular, the layer V^{gene} defined before will be denoted by $\mathfrak{g}^{*,gene}$. This defines a stratification of \mathfrak{g}^* in U_e -layers.

Next, denote by $\Omega_{G,H,\beta}$ the space of all continuations of β to V. There is in $\{U_e,\ e\in\Sigma\}$ a unique layer intersecting $\Omega_{G,H,\beta}$ in a non-empty Zariski open subset (Section 2 of [5]). We will call it the generic layer associated to the data $G,\ H$ and β , and we will denote it by $\mathfrak{g}_{G,H,\beta}^{*,gene}$. We shall say that an element ψ in $\Omega_{G,H,\beta}$ contained in $\mathfrak{g}_{G,H,\beta}^{*,gene}$ is generic in $\Omega_{G,H,\beta}$.

Remark 1. It is important to note that the layer $\mathfrak{g}^{*,gene}$ does not necessarily intersect $\Omega_{G,H,\beta}$. Indeed, a family of simple examples where the condition $\mathfrak{g}^{*,gene} \cap \Omega_{G,H,\beta} \neq \emptyset$ is not satisfied is the Heisenberg group with \mathfrak{h} containing the center and β vanishing on the center. More precisely, let $\mathfrak{g} = \mathbb{R}X \oplus \mathbb{R}Y \oplus \mathbb{R}Z$ with bracket relation [X,Y]=Z. If $\mathfrak{h} = \mathbb{R}X \oplus \mathbb{R}Z$ and $\beta=X^*$, then $\Omega_{G,H,\beta}=X^*+\mathbb{R}Y^*$ and $\mathfrak{g}^{*,gene}=\{xX^*+yY^*+zZ^*\in\mathfrak{g}^*\mid z\neq 0\}$, which shows that $\mathfrak{g}^{*,gene}\cap\Omega_{G,H,\beta}=\emptyset$.

Finally, for $l \in \mathfrak{g}^*$, we denote by B_l the antisymmetric bilinear form on \mathfrak{g} given by $B_l(X,Y) = l([X,Y])$. It is well known [3], [11] that the two following conditions are equivalent:

- (C1) τ is of finite multiplicities.
- (C2) $\mathfrak{h} + \mathfrak{g}(l)$ is lagrangian in \mathfrak{g} relative to B_l for all generic l in $\Omega_{G,H,\beta}$.

If the second conditon is satisfied, we say that $\mathfrak{h} + \mathfrak{g}(l)$ is generically lagrangian in \mathfrak{g} . It turns out that question 6 asked by Duflo in [7] is, in the case of a simply connected connected real nilpotent Lie group, exactly the same as the above question (\star) of Corwin-Greenleaf.

More precisely, consider the following assertions:

- (i) $\mathcal{D}(G, H, \beta)$ is a commutative algebra.
- (ii) $\mathfrak{h} + \mathfrak{g}(l)$ is generically lagrangian in \mathfrak{g} .
- (iii) $H \cdot l$ is generically a lagrangian submanifold of $G \cdot l$ relative to $B_l : (X, Y) \mapsto l([X, Y])$.

Note that $(ii) \Leftrightarrow (iii)$ is obvious, since if $\mathfrak{h} + \mathfrak{g}(l)$ is lagrangian in \mathfrak{g} , then $dim \ H \cdot l = \frac{1}{2} \ dim \ G \cdot l$. But $(ii) \Rightarrow (i)$ is a fundamental result proved by Corwin and Greenleaf in [5]. Baklouti and Ludwig have studied in [1] the implication $(i) \Rightarrow (ii)$ when \mathfrak{h} is an ideal of \mathfrak{g} . In the sequel, we shall study the implication $(i) \Rightarrow (ii)$ in more general cases.

3. A FIRST RESULT ON THE COMMUTATIVITY OF $\mathcal{D}(G, H, \beta)$

The description of $\mathcal{D}(G, H, \beta)$ given in [6] in terms of the enveloping algebra $\mathcal{U}(\mathfrak{g})$ of the complexification of \mathfrak{g} will be useful. Let \mathfrak{a}_{β} be the vector subspace of $\mathcal{U}(\mathfrak{g})$ generated by the $X + 2\sqrt{-1}\pi\beta(X)$, $X \in \mathfrak{h}$, and let $\mathcal{U}(\mathfrak{g})\mathfrak{a}_{\beta}$ be the left sided ideal of $\mathcal{U}(\mathfrak{g})$ generated by \mathfrak{a}_{β} . If $\mathcal{U}(\mathfrak{g}, \mathfrak{h}, \beta)$ denotes the subalgebra of $\mathcal{U}(\mathfrak{g})$ defined by

$$(3.1) \mathcal{U}(\mathfrak{g},\mathfrak{h},\beta) = \{ A \in \mathcal{U}(\mathfrak{g}) \mid \forall W \in \mathfrak{h}, [A,W] \in \mathcal{U}(\mathfrak{g})\mathfrak{a}_{\beta} \},$$

then the left action L of $\mathcal{U}(\mathfrak{g})$, defined for Y in \mathfrak{g} and f in $C^{\infty}(G)$ by

(3.2)
$$L(Y)(f)(g) = \frac{d}{dt}f(e^{-tY}g)|_{t=0},$$

induces the algebra isomorphism L_{β} : $\mathcal{U}(\mathfrak{g},\mathfrak{h},\beta)/\mathcal{U}(\mathfrak{g})\mathfrak{a}_{\beta} \simeq \mathcal{D}(G,H,\beta)$.

Next, in the usual way, we shall denote by $S(\mathfrak{g})$ the symmetric algebra of \mathfrak{g} and by $\sigma: S(\mathfrak{g}) \to \mathcal{U}(\mathfrak{g})$ the symmetrization map. We still denote by Ad (resp. ad) the natural continuation of the adjoint action of G (resp. \mathfrak{g}) in a G-action (resp. \mathfrak{g} -action) on $S(\mathfrak{g})$ and $\mathcal{U}(\mathfrak{g})$. Moreover, we shall identify an element of $S(\mathfrak{g})$ with a polynomial function on \mathfrak{g}^* .

Remark 2. F. P. Greenleaf has also obtained the following theorem with a different proof [10].

Theorem 1. Let G be a simply connected connected real nilpotent Lie group with Lie algebra \mathfrak{g} , H a connected closed subgroup of G with Lie algebra \mathfrak{h} and $\beta \in \mathfrak{h}^*$ such that $\beta([\mathfrak{h},\mathfrak{h}]) = \{0\}$. We assume that the unitary representation $\tau = \operatorname{Ind}_H^G \chi_\beta$ of G is of infinite multiplicities. Let G_0 be a connected subgroup of codimension one of G with Lie algebra \mathfrak{g}_0 containing \mathfrak{h} and such that the unitary representation $\tau_0 = \operatorname{Ind}_H^{G_0} \chi_\beta$ of G_0 is of finite multiplicities. If we suppose that there is an element W of $\mathcal{U}(\mathfrak{g},\mathfrak{h},\beta)$ such that $W \notin \mathcal{U}(\mathfrak{g}_0) + \mathcal{U}(\mathfrak{g})\mathfrak{a}_\beta$, then there exists an element T of $\mathcal{U}(\mathfrak{g}_0,\mathfrak{h},\beta)$ satisfying $[W,T] \notin \mathcal{U}(\mathfrak{g})\mathfrak{a}_\beta$.

In other words, if $\mathcal{D}(G_0, H, \beta)$ is properly imbeded in $\mathcal{D}(G, H, \beta)$, then $\mathcal{D}(G, H, \beta)$ is not commutative.

Proof. We shall frequently use in the sequel the following property: let $\mathfrak k$ be a subalgebra of codimension one of $\mathfrak g$, and l be in $\mathfrak g^*$, then the dimensions of $\mathfrak g(l)$ and of $\mathfrak k(l_{|\mathfrak k})$ differ by 1, and one of those subspaces is imbedded in the other, (see [2], Lemme 1.1.1, p. 49). In the case where $\mathfrak g(l) \subset \mathfrak k(l_{|\mathfrak k})$, one has that the dimension of G.l is bigger by 2 than the dimension of $K.(l_{|\mathfrak k})$ where $K = exp(\mathfrak k)$, and the dimensions of polarizations in $\mathfrak g$ and $\mathfrak k$ are the same. In the other case, the orbits G.l and $K.(l_{|\mathfrak k})$ have the same dimension, whereas the dimension of polarizations in $\mathfrak g$ is bigger by 1 than the dimension of polarizations in $\mathfrak k$.

Let us recall that the finite multiplicities situation is characterised by the fact that generically on $\Omega_{G,H,\beta}$, the dimension of an H-orbit is half the dimension of a G-orbit [5]. Thus, under the assumptions of the theorem, we have $\mathfrak{g}(l) \subset \mathfrak{g}_0$.

Next, we proceed by induction on the dimension of G and the theorem is supposed to be true for all groups of dimension at most n-1, where n is the dimension of G. Let $\mathcal Z$ be the center of $\mathfrak g$. We shall consider two main cases depending on whether $\mathcal Z$ is included in $\mathfrak h$.

1) Case: $\mathcal{Z} \subset \mathfrak{h}$ and $\mathcal{Z} \cap Ker(\beta) \neq \{0\}$. In this case, we apply the induction hypothesis to the quotient group with Lie algebra $\mathfrak{g}/(\mathcal{Z} \cap Ker(\beta))$.

In the following cases 2), 3) and 4), we have $\mathcal{Z} \subset \mathfrak{h}$ and $\mathcal{Z} \cap Ker(\beta) = \{0\}$, so that the center \mathcal{Z} of \mathfrak{g} is necessarily one-dimensional. We put $\mathcal{Z} = \mathbb{R}Z$ with $\beta(Z) = 1$. Moreover, it is easy to check the existence of elements X of \mathfrak{g} and Y of \mathfrak{g}_0 such that [X,Y] = Z. In the sequel, we shall denote by \mathfrak{k} the centralizer of Y in \mathfrak{g} and by K the connected subgroup of G with Lie algebra \mathfrak{k} .

2) Case: $\mathcal{Z} \subset \mathfrak{h}$, $\mathcal{Z} \cap Ker(\beta) = \{0\}$, $\mathfrak{h} \subset \mathfrak{k}$ and $Y \in \mathfrak{h}$. Let l be an element of \mathfrak{g}^* satisfying $l(Z) \neq 0$, (since $\beta(Z) = 1$, this condition is satisfied by any element of $\Omega_{G,H,\beta}$). One has $\mathfrak{k}(l_{|\mathfrak{k}}) = \mathfrak{g}(l) \oplus \mathbb{R}Y$. And, as we noticed before, the dimension $[dim(\mathfrak{g}) + dim(\mathfrak{g}(l))]/2$ of a polarization of \mathfrak{g} at a point $l \in \mathfrak{g}^*$ is the same as the dimension $[dim(\mathfrak{k}) + dim(\mathfrak{k}(l_{|\mathfrak{k}}))]/2$ of a polarization of \mathfrak{k} at the point $l_{|\mathfrak{k}} \in \mathfrak{k}^*$. Moreover, we also have $\mathfrak{h} + \mathfrak{k}(l_{|\mathfrak{k}}) = \mathfrak{h} + \mathfrak{g}(l)$. Next, we choose a weak Malcev basis of

 \mathfrak{g} passing throught \mathfrak{h} and \mathfrak{k} , and we consider a generic element l in $\Omega_{G,H,\beta}$. Then, the equivalent conditions (C1) and (C2) of Section 2 show that the multiplicities of the representations $\tau = Ind_H^G \chi_\beta$ of G and $\tau' = Ind_H^K \chi_\beta$ of K are of the same type, that is, both infinite. But $\tau_0 = Ind_H^{G_0} \chi_\beta$ is supposed to be of finite multiplicities, so one has $\mathfrak{g}_0 \neq \mathfrak{k}$.

On the other hand, for $l \in \Omega_{G,H,\beta}$, we have $(\mathfrak{g}_0 \cap \mathfrak{k})(l_{|\mathfrak{g}_0 \cap \mathfrak{k}}) = \mathfrak{g}_0(l_{|\mathfrak{g}_0}) \oplus \mathbb{R}Y$. Choosing a weak Malcev basis of \mathfrak{g} passing through \mathfrak{h} , $\mathfrak{g}_0 \cap \mathfrak{k}$ and \mathfrak{g}_0 , we see that the unitary representation $\tau'_0 = Ind_H^{G_0 \cap K} \chi_\beta$ of $G_0 \cap K$ is, as the representation $\tau_0 = Ind_H^{G_0} \chi_\beta$ of G_0 , of finite multiplicities. Let us write the element W of the theorem in the form $W = \sum_{j=0}^{j=r} X^j U_j$ with U_j in $\mathcal{U}(\mathfrak{k})$. Since the element Y is in \mathfrak{h} , the elements $ad(-Y)^r(W) = r!Z^rU_r$ and U_r are in $\mathcal{U}(\mathfrak{g})\mathfrak{a}_\beta$ for all $r \neq 0$. Thus we can suppose $W = U_0$ is in $\mathcal{U}(\mathfrak{k},\mathfrak{h},\beta)$. Finally, for $W \in \mathcal{U}(\mathfrak{k},\mathfrak{h},\beta)$, we apply the induction hypothesis to K and $G_0 \cap K$ with the representation $\tau' = Ind_H^{K}\chi_\beta$ and $\tau'_0 = Ind_H^{G_0 \cap K} \chi_\beta$ respectively.

3) Case: $\mathcal{Z} \subset \mathfrak{h}$, $\mathcal{Z} \cap Ker(\beta) = \{0\}$, $\mathfrak{h} \subset \mathfrak{k}$ and $Y \not\in \mathfrak{h}$. i) $\mathfrak{g}_0 = \mathfrak{k}$. The element Y is in $\mathcal{U}(\mathfrak{g}_0, \mathfrak{h}, \beta)$ and satisfy $[W, Y] \not\in \mathcal{U}(\mathfrak{g})\mathfrak{a}_{\beta}$. We take T = Y. ii) $\mathfrak{g}_0 \neq \mathfrak{k}$ and $W \not\in \mathcal{U}(\mathfrak{k}) + \mathcal{U}(\mathfrak{g})\mathfrak{a}_{\beta}$. We still can choose T to be the element Y. iii) $\mathfrak{g}_0 \neq \mathfrak{k}$ and $W \in \mathcal{U}(\mathfrak{k}) + \mathcal{U}(\mathfrak{g})\mathfrak{a}_{\beta}$.

We consider the inclusions: $(\mathfrak{g}_0 \cap \mathfrak{k}) \subset \mathfrak{g}_0 \subset \mathfrak{g}$ and $(\mathfrak{g}_0 \cap \mathfrak{k}) \subset \mathfrak{k} \subset \mathfrak{g}$. Let l be in \mathfrak{g}^* with $l(Z) \neq 0$. We denote by d the dimension of $\mathfrak{g}(l)$. Under the assumption of the theorem, as we have already remarked at the beginning, we have $\mathfrak{g}(l) \subset \mathfrak{g}_0$, so that the dimension of $\mathfrak{g}_0(l_{|\mathfrak{g}_0})$ is d+1. The dimension of $\mathfrak{k}(l_{|\mathfrak{k}})$ is also d+1 because the element Y of $\mathfrak{k}(l_{|\mathfrak{k}})$ does not belong to $\mathfrak{g}(l)$. Moreover, Y is in $(\mathfrak{g}_0 \cap \mathfrak{k})(l_{|\mathfrak{g}_0 \cap \mathfrak{k}})$ but is not in $\mathfrak{g}_0(l_{|\mathfrak{g}_0})$. In other words, the dimension of $(\mathfrak{g}_0 \cap \mathfrak{k})(l_{|\mathfrak{g}_0 \cap \mathfrak{k}})$ is d+2. Thus, the representation $\tau' = Ind_H^K \chi_\beta$ of K is necessarily of infinite multiplicities. Indeed, the representation $\tau' = Ind_H^{K \cap G_0} \chi_\beta$ has finite multiplicities and, from the previous calculus of dimensions of stabilizers, we deduce that if the representation $\tau' = Ind_H^K \chi_\beta$ of K had finite multiplicities, the dimensions of H-orbits for generic $l \in \Omega_{G,H,\beta}$ would increase when passing from $K \cap G_0$ to K, which makes impossible the existence of an element $W \in \mathcal{U}(\mathfrak{k}) + \mathcal{U}(\mathfrak{g})\mathfrak{a}_\beta$ that is not in $\mathcal{U}(\mathfrak{k} \cap \mathfrak{g}_0) + \mathcal{U}(\mathfrak{g})\mathfrak{a}_\beta$ as it is shown in [5]. Finally, we apply the induction hypothesis to K and $G_0 \cap K$ with the representation τ' and τ'_0 respectively.

4) $Case: \mathcal{Z} \subset \mathfrak{h}, \mathcal{Z} \cap Ker(\beta) = \{0\}$ and $\mathfrak{h} \not\subset \mathfrak{k}$. Note that, since $\mathfrak{h} \subset \mathfrak{g}_0$, one has necessarily $\mathfrak{g}_0 \neq \mathfrak{k}$. Let us write $\mathfrak{g}_0 = (\mathfrak{g}_0 \cap \mathfrak{k}) \oplus \mathbb{R} X$, with $X \in \mathfrak{h}$, so that $\mathfrak{g} = \mathfrak{k} \oplus \mathbb{R} X$, and denote by $\hat{\beta}$ the restriction of β to $\mathfrak{h} \cap \mathfrak{k}$. Let l be an element of $\Omega_{G,H,\beta}$. We have $l(Z) \neq 0$. Then $\mathfrak{k}(l_{|\mathfrak{k}}) = \mathfrak{g}(l) \oplus \mathbb{R} Y$, so that $(\mathfrak{h} \cap \mathfrak{k}) \cap \mathfrak{k}(l_{|\mathfrak{k}}) = \mathfrak{h} \cap \mathfrak{g}(l)$, since $\mathfrak{h} \not\subset \mathfrak{k}$. This forces the vector spaces $\mathfrak{h} + \mathfrak{g}(l)$ and $(\mathfrak{h} \cap \mathfrak{k}) + \mathfrak{k}(l_{|\mathfrak{k}})$ to have the same dimension. It follows that if the first subspace is not lagrangian in \mathfrak{g} , the second is not lagrangian in \mathfrak{k} . Hence, choosing sequences of subalgebras and using equivalence of conditions (C1) and (C2), we obtain that the representation $\tau_1 = Ind_{H \cap K}^K \chi_{\hat{\beta}}$ of K is of infinite multiplicities. On the other hand, we have $(\mathfrak{g}_0 \cap \mathfrak{k})(l \mid_{\mathfrak{g}_0 \cap \mathfrak{k}}) = \mathfrak{g}_0(l_{|\mathfrak{g}_0}) \oplus \mathbb{R} Y$ and $dim(\mathfrak{h} + \mathfrak{g}_0(l \mid_{\mathfrak{g}_0})) = dim((\mathfrak{h} \cap \mathfrak{k}) + (\mathfrak{g}_0 \cap \mathfrak{k})(l \mid_{\mathfrak{g}_0 \cap \mathfrak{k}}))$, which imply that the representation $\tau_2 = Ind_{H \cap K}^{G_0 \cap K} \chi_{\hat{\beta}}$ of $G_0 \cap K$ is of finite multiplicities.

Moreover, W can be supposed to belong to $\mathcal{U}(\mathfrak{k},\mathfrak{h}\cap\mathfrak{k},\hat{\beta})$ since $\mathfrak{g}=\mathfrak{k}\oplus\mathbb{R}X$ with $X\in\mathfrak{h}$, and $X=-2\sqrt{-1}\pi\beta(X)$ modulo \mathfrak{a}_{β} . We apply the induction hypothesis to

K and $G_0 \cap K$ with the representation τ_1 and τ_2 respectively to obtain an element \hat{T} in $\mathcal{U}(\mathfrak{g}_0 \cap \mathfrak{k}, \mathfrak{h} \cap \mathfrak{k}, \hat{\beta})$ such that $[W, \hat{T}] \notin \mathcal{U}(\mathfrak{k})\mathfrak{a}_{\hat{\beta}}$.

Next, let $X_1 = Y$ and $X_i, i \in \{2, \cdots, q\}$, be in $\mathfrak{g}_0 \cap \mathfrak{k}$, such that if we put $\tilde{\mathfrak{g}}_i = \mathfrak{h} \oplus \mathbb{R} X_1 \oplus \mathbb{R} X_2 \oplus \cdots \oplus \mathbb{R} X_i$ with $\mathfrak{g}_q = \mathfrak{g}_0$, then the sequence of subalgebras $(\tilde{\mathfrak{g}}_i)_{i=1,\cdots,q}$ of \mathfrak{g}_0 is Jordan-Hölder for the action of H on \mathfrak{g}_0 . It is interesting to notice that the sequence $(\hat{\mathfrak{g}}_i)_{i=1,\cdots,q}$, with $\hat{\mathfrak{g}}_i = (\mathfrak{h} \cap \mathfrak{k}) \oplus \mathbb{R} X_1 \oplus \cdots \oplus \mathbb{R} X_i$ is also Jordan-Hölder for the action of $H \cap K$ on $\mathfrak{g}_0 \cap \mathfrak{k}$. We put $\tilde{G}_i = \exp(\tilde{\mathfrak{g}}_i)$ and $\hat{G}_i = \exp(\hat{\mathfrak{g}}_i)$ for $i = 1, \cdots, q$. Then the dimension of generic H-orbits in $\Omega_{\tilde{G}_i, H \cap K, \hat{\beta}}$.

On the other hand, since the representations $\tau_0 = Ind_H^{G_0}\chi_{\beta}$ of G_0 and $\tau_2 = Ind_{H\cap K}^{G_0\cap K}\chi_{\hat{\beta}}$ of $G_0\cap K$ are of finite multiplicities, there are elements $\{\tilde{\gamma}_1,\cdots,\tilde{\gamma}_r\}$ of $\mathcal{U}(\mathfrak{g}_0,\mathfrak{h},\beta)$ and $\{\hat{\delta}_0=Y,\hat{\delta}_1,\cdots,\hat{\delta}_r\}$ of $\mathcal{U}(\mathfrak{g}_0\cap\mathfrak{k},\mathfrak{h}\cap\mathfrak{k},\hat{\beta})$ given in [5], such that the families $\{\gamma_i=L(\tilde{\gamma}_i)\mid i=1,\cdots,r\}$ and $\{\delta_i=L(\hat{\delta}_i)\mid i=0,\cdots,r\}$ are rational generators of $\mathcal{D}(G_0,H,\beta)$ and $\mathcal{D}(G_0\cap K,H\cap K,\hat{\beta})$ respectively. To simplify, we shall call the γ_i 's and δ_i 's, the Corwin-Greenleaf generators of $\mathcal{D}(G_0,H,\beta)$ and $\mathcal{D}(G_0\cap K,H\cap K,\hat{\beta})$ respectively. Note that $\mathcal{D}(G_0,H,\beta)$ is contained in $\mathcal{D}(G_0\cap K,H\cap K,\hat{\beta})$. Moreover, we may suppose that for the element \hat{T} above, $L(\hat{T})$ is one of the Corwin-Greenleaf generators of $\mathcal{D}(G_0\cap K,H\cap K,\hat{\beta})$. Thus, since [W,Y]=0, we denote by δ_{j_0} the first element of $\{\hat{\delta}_1,\cdots,\hat{\delta}_r\}$ satisfying $[\hat{\delta}_{j_0},W]\not\in\mathcal{U}(\mathfrak{k})\mathfrak{a}_{\hat{\beta}}$. Then, from [5], one can find polynomials A,B and C of f_0 variables such that $A(\delta_0,\cdots,\delta_{j_0-1})\gamma_{j_0}=B(\delta_0,\cdots,\delta_{j_0-1})\delta_{j_0}+C(\delta_0,\cdots,\delta_{j_0-1})$, with $A(\delta_0,\cdots,\delta_{j_0-1})$ and $B(\delta_0,\cdots,\delta_{j_0-1})$ non-zero.

It turns out that $[\tilde{\gamma}_{j_0}, W] \notin \mathcal{U}(\mathfrak{g})\mathfrak{a}_{\beta}$. Indeed, because $\mathcal{D}(G, H, \beta)$ has no non-zero divisor of zero, we have $A(\delta_1, \dots, \delta_{j_0-1})[\gamma_{j_0}, L(W)] = B(\delta_1, \dots, \delta_{j_0-1})[\delta_{j_0}, L(W)] \neq 0$, so that $[\gamma_{j_0}, L(W)] \neq 0$. Hence, we can choose $T = \tilde{\gamma}_{j_0}$, that is L(T) is the Corwin-Greenleaf generator γ_{j_0} of $\mathcal{D}(G_0, H, \beta)$.

5) Case: $\mathbb{Z} \not\subset \mathfrak{h}$. First, remember that an immediate consequence of the assumptions of the theorem is that \mathcal{Z} is embedded in \mathfrak{g}_0 . Next, let Z be in \mathcal{Z} which does not belong to \mathfrak{h} . Denote by \mathfrak{h}' the subalgebra $\mathfrak{h} \oplus \mathbb{R}Z$ of \mathfrak{g} and by H' the connected subgroup of G with Lie algebra \mathfrak{h}' . Let ϕ be a generic element of $\Omega_{G,H,\beta}$ and put $\alpha = \phi(Z)$. Define, as usual, the character χ_{ϕ} of H' by $\chi_{\phi}(e^{U}) = e^{2\sqrt{-1}\pi\phi(U)}$ for all $U \in \mathfrak{h}'$, so that the unitary representation $\tau_0^{\alpha} = Ind_{H'}^{G_0} \chi_{\phi}$ of G_0 is of finite multiplicities. Let $\mathfrak{h} \subset \mathfrak{h} \oplus \mathbb{R} Z \subset \mathfrak{h} \oplus \mathbb{R} Z \oplus \mathbb{R} X_1 \subset \mathfrak{h} \oplus \mathbb{R} Z \oplus \mathbb{R} X_1 \oplus \mathbb{R} X_2 \subset \cdots \subset \mathfrak{g}_0$ be a Jordan-Hölder sequence for the action of H on \mathfrak{g}_0 , and consider the sequence $\mathfrak{h}' \subset \mathfrak{h}' \oplus \mathbb{R}X_1 \subset \mathfrak{h}' \oplus \mathbb{R}X_1 \oplus \mathbb{R}X_2 \subset \cdots \subset \mathfrak{g}_0$ which is also a Jordan-Hölder sequence for the action of H' on \mathfrak{g}_0 . Actually, since H and H' have the same orbits in \mathfrak{g}_0 , if $\{\gamma_1 = L(Z), \gamma_2, \cdots, \gamma_q\}$ is a set of Corwin-Greenleaf generators of $D(G_0, H, \beta)$, then $\{\gamma_2, \dots, \gamma_q\}$ is a set of Corwin-Greenleaf generators of $D(G_0, H', \phi)$. Any Corwin-Greenleaf generator of $D(G_0, H, \beta)$ can be represented in $\mathcal{U}(\mathfrak{g}_0,\mathfrak{h},\beta)/\mathcal{U}(\mathfrak{g}_0)\mathfrak{a}_{\beta}$ by an element $C = \sum_{\nu,\mu} a_{\nu,\mu} Z^{\nu} X_1^{\mu_1} \cdots X_p^{\mu_p}$ of $\mathcal{U}(\mathfrak{g}_0,\mathfrak{h},\beta)$. And observe that any element of $\mathcal{U}(\mathfrak{g}_0,\mathfrak{h},\beta)$ belongs to $\mathcal{U}(\mathfrak{g}_0,\mathfrak{h}',\phi)$. Actually, Cacts on $C^{\infty}(G_0, H', \phi)$ as $C(\alpha) = \sum_{\nu, \mu} a_{\nu, \mu} (-2\sqrt{-1}\pi\alpha)^{\nu} X_1^{\mu_1} \cdots X_p^{\mu_p}$. On the other hand, the element W of $\mathcal{U}(\mathfrak{g},\mathfrak{h},\beta)$ acts on $C^{\infty}(G,H',\phi)$ as $W(\alpha)$, so that $[W(\alpha), C(\alpha)] = [W, C](\alpha)$ on $C^{\infty}(G, H', \phi)$. Moreover, one can choose α in such a way that $W = W(\alpha) + (W - W(\alpha)) = W(\alpha) + \tilde{W}[Z + 2\sqrt{-1}\pi\alpha]$, with $\tilde{W} \in \mathcal{U}(\mathfrak{g})$

and $W(\alpha) \notin \mathcal{U}(\mathfrak{g}_0) + \mathcal{U}(\mathfrak{g})\mathfrak{a}_{\phi}$. If $\mathcal{Z} \not\subset \mathfrak{h}'$, taking an element in \mathcal{Z} which does not belong to \mathfrak{h}' , we apply the same procedure as above. After a finite number of steps, we get, instead of \mathfrak{h} , a subalgebra containing the center \mathcal{Z} of \mathfrak{g} . In this case, we just apply the results of the previous cases and we choose for the element T one of the Corwin-Greenleaf generators.

3.1. The case where $(\mathfrak{g};\mathfrak{h})$ is a reductive pair. We say that $(\mathfrak{g};\mathfrak{h})$ is a reductive pair, if there exists a vector subspace \mathfrak{m} of \mathfrak{g} such that $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$ and $[\mathfrak{h},\mathfrak{m}] \subset \mathfrak{m}$.

Corollary 1. Let G be a simply connected connected real nilpotent Lie group with Lie algebra \mathfrak{g} , H a connected closed subgroup of G with Lie algebra \mathfrak{h} and $\beta \in \mathfrak{h}^*$ such that $\beta([\mathfrak{h},\mathfrak{h}]) = \{0\}$. Suppose that $(\mathfrak{g};\mathfrak{h})$ is a reductive pair. Then the assertions (i), (ii) and (iii) of Section 2 are equivalent.

Proof. (i) \Rightarrow (ii): Under the notation of Section 2, we take $V = \mathfrak{m}^*$, which could be identified to $\Omega_{G,H,\beta}$, so that we have the unipotent action Ad^* of H on V. Let \mathfrak{g}_0 be an ideal of codimension one of \mathfrak{g} containing \mathfrak{h} and $G_0 = \exp(\mathfrak{g}_0)$. One can suppose that $\tau_0 = Ind_H^{G_0}\chi_\beta$ is of finite multiplicities. Then, the H-orbits in V have generically the same dimension as the H-orbits in $(\mathfrak{m} \cap \mathfrak{g}_0)^*$ (that is the H-orbits in V are generically not saturated in the direction $(\mathfrak{m} \cap \mathfrak{g}_0)^{\perp}$). This implies the existence of an H-invariant homogeneous polynomial P on V which does not belong to $S(\mathfrak{m} \cap \mathfrak{g}_0)$ (Theorem of page 55 in [12]). On the other hand, since $(\mathfrak{g};\mathfrak{h})$ is a reductive pair then it is easy to check that the symmetrization map σ is a vector space isomorphism between $S(\mathfrak{m})^H$ and $\mathcal{U}(\mathfrak{g},\mathfrak{h},\beta)/\mathcal{U}(\mathfrak{g})\mathfrak{a}_\beta$. In particular, $\sigma(P)$ is a non-zero element of $\mathcal{U}(\mathfrak{g},\mathfrak{h},\beta)$ satisfying $\sigma(P) \notin \mathcal{U}(\mathfrak{g}_0) + \mathcal{U}(\mathfrak{g})\mathfrak{a}_\beta$. So Theorem 1 above applies to $W \equiv \sigma(P)$.

For
$$(ii) \Rightarrow (iii)$$
 and $(iii) \Rightarrow (i)$ see the end of Section 2.

Remark 3. An interesting consequence of the Corollary 1 is that if H is one-dimensional then the assertions (i), (ii) and (iii) are equivalent. Indeed, if \mathfrak{h} is a one-dimensional subalgebra of \mathfrak{g} , then it is easy to see that $(\mathfrak{g};\mathfrak{h})$ is a reductive pair [5].

Remark 4. Another consequence of the Corollary 1 is the case where $Ker(\beta)$ is an ideal of \mathfrak{g} . In this case, we just apply the Remark 3 above to the one-dimensional quotient $\mathfrak{h}/Ker(\beta)$.

4. A SECOND RESULT ON THE COMMUTATIVITY OF $\mathcal{D}(G, H, \beta)$

Here we explain, precisely, how to construct, in some cases, the element W of Theorem 1. We keep the previous notation. In particular, remember that σ : $S(\mathfrak{g}) \to \mathcal{U}(\mathfrak{g})$ denotes the symmetrization map, and L is the left action of $\mathcal{U}(\mathfrak{g})$ on $C^{\infty}(G)$ defined by (3.2).

4.1. Preliminary results.

Lemma 1. Let \mathfrak{m} be an ideal of codimension one in \mathfrak{g} such that $\mathfrak{g} = \mathfrak{m} \oplus \mathbb{R}X$. If $P \in S(\mathfrak{m})$, then $\sigma(PX) = \sigma(P)X + Q$ where $Q \in \mathcal{U}(\mathfrak{m})$.

Proof. Let $k \geq 1$. If $I_k = (i_1, \dots, i_k) \in [1; m]^k$, we define $P_{I_k} = X_{i_1} \dots X_{i_k}$. Let $P \in S(\mathfrak{m})$ be of degree d, such that $P = \sum_{k=1}^d \sum_{I_k \in [1; m]^k} a_{I_k} P_{I_k}$, with $a_{I_k} \in \mathbb{C}$.

Thus, we have

(4.1)
$$\sigma(PX) = \sum_{k=1}^{d} \sum_{I_k \in [1;m]^k} a_{I_k} \frac{1}{(k+1)!} \sum_{\mu \in \mathcal{S}_k} \sum_{j=0}^k T_j(X_{\mu(i_1)} \cdots X_{\mu(i_k)})$$

where S_k denotes the symmetric group of k elements, and, for all $0 \le j \le k$, $T_j(X_{\mu(i_1)} \cdots X_{\mu(i_k)}) \equiv X_{\mu(i_1)} \cdots X_{\mu(i_j)} X X_{\mu(i_{j+1})} \cdots X_{\mu(i_k)}$. Remarking that

$$(4.2) T_j(X_{\mu(i_1)}\cdots X_{\mu(i_k)}) = T_{j+1}(X_{\mu(i_1)}\cdots X_{\mu(i_k)}) + q, q \in \mathcal{U}(\mathfrak{m}),$$

we get that

(4.3)
$$T_{j}(X_{\mu(i_{1})}\cdots X_{\mu(i_{k})}) = X_{\mu(i_{1})}\cdots X_{\mu(i_{k})}X + \tilde{q}, \quad \tilde{q} \in \mathcal{U}(\mathfrak{m}),$$

so

(4.4)
$$\sigma(PX) = \sum_{k=1}^{d} \sum_{I_k \in [1;m]^k} a_{I_k} \frac{1}{k!} \sum_{\mu \in \mathcal{S}_k} X_{\mu(i_1)} \cdots X_{\mu(i_k)} X + Q$$
$$= \sigma(P)X + Q, \quad Q \in \mathcal{U}(\mathfrak{m}).$$

Now let $\{X_1, \dots, X_n\}$ be a basis of \mathfrak{g} , such that $\{X_1, \dots, X_p\}$ is a basis of \mathfrak{h} and

(4.5)
$$[X_j, X_k] = \sum_{l=1}^{\sup(j,k)-1} a_l(j,k) X_l \quad \text{with } a_l(j,k) \in \mathbb{R}.$$

Moreover, for all f in $C^{\infty}(G, H, \beta)$, we define a function f^{\sharp} on \mathbb{R}^n by

$$(4.6) f^{\sharp}(x_1, \cdots, x_n) = f(\exp(x_1 X_1) \cdots \exp(x_n X_n)).$$

If X_i is in \mathfrak{g} , we put

$$(4.7) [L(X_i)]^{\sharp}(f^{\sharp}) = [L(X_i)(f)]^{\sharp} \quad \forall f \in C^{\infty}(G, H, \beta).$$

This definition extends naturally to $\mathcal{U}(\mathfrak{g})$.

Lemma 2. We have

(4.8)

$$[L(X_j)]^{\sharp} = \begin{cases} -2\sqrt{-1}\pi\beta(X_j)Id & \text{if } 1 \leq j \leq p, \\ -\frac{\partial}{\partial x_j} - \sum_{l=p+1}^{j-1} q_l \frac{\partial}{\partial x_l} - 2\sqrt{-1}\pi \sum_{l=1}^{p} q_l \beta(X_l)Id & \text{if } p+1 \leq j \leq n, \end{cases}$$

where the q_l are polynomials in variables x_1, \dots, x_{j-1} such that $q_l(0) = 0$.

Proof. Let $f \in C^{\infty}(G, H, \beta)$. By definition, we have

(4.9)
$$[L(X_j)]f(\exp(x_1X_1)\cdots\exp(x_nX_n))$$
$$=\frac{d}{dt}f(\exp(-tX_j)\exp(x_1X_1)\cdots\exp(x_nX_n))\mid_{t=0}.$$

Then we have to consider the two cases $1 \le j \le p$ and $p+1 \le j \le n$.

Case: $1 \le j \le p$. Since f is H-covariant, it follows that

$$[L(X_j)]f(\exp(x_1X_1)\cdots\exp(x_nX_n))$$

$$= \frac{d}{dt}\exp(-2\sqrt{-1}\pi t\beta(X_j))f(\exp(x_1X_1)\cdots\exp(x_nX_n))|_{t=0}$$

which means that

$$(4.11) [L(X_i)]^{\sharp} = -2\sqrt{-1}\pi\beta(X_i)Id \quad \forall 1 \le j \le p.$$

Case: $p+1 \le j \le n$. First note that

(4.12)
$$\exp(-tX_j) \exp(x_1X_1) \cdots \exp(x_nX_n)$$

$$= \left[\prod_{k=1}^{j-1} \exp(Ad(\exp(-tX_j)(x_kX_k)))\right] \times \exp((x_j - t)X_j) \exp(x_{j+1}X_{j+1}) \cdots \exp(x_nX_n).$$

where

$$Ad(\exp(-tX_{j}))(x_{k}X_{k}) = [\exp(-tad(X_{j}))](x_{k}X_{k})$$

$$= x_{k}X_{k} - tx_{k}\sum_{l=1}^{j-1}P_{l}(k,t)X_{l} \quad \forall 1 \leq k \leq j-1,$$

where $P_l(k,t)$ is a polynomial in the variable t. Moreover, the Campbell-Hausdorff formula in [4] allows us to write that

(4.14)
$$\prod_{k=1}^{j-1} \exp(x_k X_k - t x_k \sum_{l=1}^{j-1} P_l(k, t) X_l) = \exp(\sum_{k=1}^{j-1} x_k X_k - t \sum_{l=1}^{j-1} q_l(j-1; t, x) X_l)$$

where $q_l(j-1;t,x)$ is a polynomial in the variables t and $x=(x_1,\cdots,x_{j-1})$ such that $q_l(j-1;t,0)=0$ for all $1 \leq l \leq j-1$. The idea is then to rewrite the right side of (4.14) as follows:

$$(4.15)$$

$$\exp(\sum_{k=1}^{j-1} x_k X_k - t \sum_{l=1}^{j-1} q_l(j-1;t,x) X_l)$$

$$= \exp(\sum_{k=1}^{j-2} x_k X_k - t \sum_{l=1}^{j-2} q_l(j-1;t,x) X_l + (x_{j-1} - tq_{j-1}(j-1;t,x)) X_{j-1})$$

$$= \exp(\sum_{k=1}^{j-2} x_k X_k - t \sum_{l=1}^{j-2} q_l(j-1;t,x) X_l + (x_{j-1} - tq_{j-1}(j-1;t,x)) X_{j-1})$$

$$\times \exp(-(x_{j-1} - tq_{j-1}(j-1;t,x)) X_{j-1}) \exp((x_{j-1} - tq_{j-1}(j-1;t,x)) X_{j-1}).$$

Again the Campbell-Hausdorff formula implies that

$$(4.16)$$

$$\exp(\sum_{k=1}^{j-1} x_k X_k - t \sum_{l=1}^{j-1} q_l(j-1;t,x) X_l)$$

$$= \exp(\sum_{k=1}^{j-2} x_k X_k - t \sum_{l=1}^{j-2} q_l(j-2;t,x) X_l) \exp((x_{j-1} - t q_{j-1}(j-1;t,x)) X_{j-1})$$

where $q_l(j-2;t,x)$ is a polynomial in the variables t and $x=(x_1,\dots,x_{j-1})$, such that $q_l(j-2;t,0)=0$. We apply the same process to

$$\exp(\sum_{k=1}^{j-2} x_k X_k - t \sum_{j=1}^{j-2} q_l(j-2;t,x) X_l).$$

After j-2 steps, we obtain that

(4.17)

$$\exp(\sum_{k=1}^{j-1} x_k X_k - t \sum_{l=1}^{j-1} q_l(j-1;t,x) X_l) = \prod_{k=1}^{j-1} \exp((x_k - t q_k(k;t,x)) X_k)$$

where, for all $1 \le k \le j-1$, $q_k(k;t,x)$ is a polynomial in the variables t and $x = (x_1, \dots, x_{j-1})$ such that $q_k(k;t,0) = 0$. Thus, we have

(4.18)

$$[L(X_i)]^{\sharp} f^{\sharp}(x_1,\cdots,x_n)$$

$$= \frac{d}{dt} f^{\sharp}(x_1 - tq_1(1; t, x), \cdots, x_{j-1} - tq_{j-1}(j-1; t, x), x_j - t, x_{j+1}, \cdots, x_n) \mid_{t=0}.$$

If we put $q_k(x) = q_k(k; 0, x)$, $1 \le k \le j - 1$, we obtain the result using the *H*-covariance of f in $C^{\infty}(G, H, \beta)$.

As we said before (Section 3), we view the symmetric algebra $S(\mathfrak{g})$ (resp. $S^m(\mathfrak{g})$) of \mathfrak{g} as the algebra $\mathbb{C}[\mathfrak{g}^*]$ of polynomials (resp. polynomials of degree m) on \mathfrak{g}^* . Denote by $S(\mathfrak{g})^H$ (resp. $S^m(\mathfrak{g})^H$) its subalgebra of H-invariant polynomials on \mathfrak{g}^* defined by

$$(4.19) \qquad \mathbb{C}[\mathfrak{g}^*]^H = \{ P \in \mathbb{C}[\mathfrak{g}^*] \mid Ad(h)(P)(l) = P(l) \ \forall h \in H \ \forall l \in \mathfrak{g}^* \}.$$

It is clear that any polynomial on \mathfrak{g}^* can be written as a finite sum of homogeneous polynomials. Then we have

$$(4.20) \forall m \in \mathbb{N} \ \forall Y \in H \ \forall P \in S^m(\mathfrak{g}), \ ad(Y)(P) \in S^m(\mathfrak{g})$$

so that

$$(4.21) S(\mathfrak{g})^H = \bigoplus_{m>0} S^m(\mathfrak{g})^H.$$

On the other hand, using the basis $\{X_1, \dots, X_n\}$ defined by (4.5), we write for multi-indexes in \mathbb{N}^n , $(\nu, \alpha) = (\nu_1, \dots, \nu_p, \alpha_{p+1}, \dots, \alpha_n)$. Then, following the Poincaré-Birkhoff-Witt Theorem, any element of $\mathcal{U}(\mathfrak{g})$ can be written as

(4.22)
$$\sum_{(\alpha,\nu)\in\mathbb{N}^{n-p}\times\mathbb{N}^p} a_{\nu,\alpha} X_n^{\alpha_n} \cdots X_{p+1}^{\alpha_{p+1}} X_p^{\nu_p} \cdots X_1^{\nu_1}$$

$$\equiv \sum_{(\alpha,\nu)\in\mathbb{N}^{n-p}\times\mathbb{N}^p} a_{\nu,\alpha} X^{\alpha} X^{\nu} \text{ with } a_{\nu,\alpha} \in \mathbb{C}.$$

However, to avoid confusion between $\mathcal{U}(\mathfrak{g})$ and $S(\mathfrak{g})$, we shall use small letters for the basis of \mathfrak{g} defined by (4.5) to write any polynomial on \mathfrak{g}^* as

$$\sum_{(\alpha,\nu)\in\mathbb{N}^{n-p}\times\mathbb{N}^p}a_{\nu,\alpha}x_n^{\alpha_n}\cdots x_{p+1}^{\alpha_{p+1}}x_p^{\nu_p}\cdots x_1^{\nu_1}\equiv\sum_{(\alpha,\nu)\in\mathbb{N}^{n-p}\times\mathbb{N}^p}a_{\nu,\alpha}x^{\alpha}x^{\nu} \text{ with } a_{\nu,\alpha}\in\mathbb{C}.$$

As usual, if $\lambda \in \mathbb{N}^n$ is a multi-index, we shall denote its length as the number $|\lambda| = \sum_{k=1}^n \lambda_k$; so that the degree of the element $\sum_{(\nu,\alpha)\in\mathbb{N}^n} a_{\nu,\alpha} X^{\alpha} X^{\nu}$ of $\mathcal{U}(\mathfrak{g})$ is the number $|\alpha| + |\nu|$. In the sequel, we shall denote by $\mathcal{U}_m(\mathfrak{g})$ the vector subspace of $\mathcal{U}(\mathfrak{g})$ of the elements with degree at most m.

Lemma 3. Let G be a simply connected connected nilpotent Lie group. Assume H is a commutative subgroup of G. Let \mathcal{P} be an H-invariant homogeneous polynomial on \mathfrak{g}^* such that \mathcal{P} does not vanish identically on \mathfrak{g}^* . Then there exists a non-empty Zariski open subset \mathcal{O} of \mathfrak{h}^* , such that for all β in \mathcal{O} , we have $(L_{\beta} \circ \sigma)(\mathcal{P}) \neq 0$ in $\mathcal{D}(G, H, \beta)$, where L_{β} is the isomorphism induced by (3.2).

Proof. Suppose that \mathcal{P} is a homogeneous polynomial of degree d which does not vanish identically on \mathfrak{g}^* . We can write as in (4.23):

(4.24)
$$\mathcal{P} = \sum_{\substack{(\alpha,\nu) \in \mathbb{N}^n - p \times \mathbb{N}^p \\ |\alpha| + |\nu| = d}} a_{\nu,\alpha} x^{\alpha} x^{\nu}$$

with $a_{\nu,\alpha}$ in \mathbb{C} . Then applying the symmetrization map to \mathcal{P} , we get

(4.25)
$$\sigma(\mathcal{P}) = \sum_{\substack{(\alpha,\nu) \in \mathbb{N}^n - p \times \mathbb{N}^p \\ |\alpha| + |\nu| = d}} (a_{\nu,\alpha} X^{\alpha} X^{\nu} + W_{\alpha,\nu})$$

where

$$W_{\alpha,\nu} = \sum_{\substack{(\alpha',\nu') \in \mathbb{N}^{n-p} \times \mathbb{N}^p \\ |\alpha'| + |\nu'| < |\alpha| + |\nu|}} b_{\nu',\alpha'} X^{\alpha'} X^{\nu'}.$$

Actually, we can rewrite (4.25) as follows:

$$(4.27) \qquad \sigma(\mathcal{P}) = \sum_{\alpha \in \mathbb{N}^{n-p}} X^{\alpha} \left(\sum_{\substack{\nu \in \mathbb{N}^p \\ |\nu| = d - |\alpha|}} a_{\alpha,\nu} X^{\nu} + \sum_{\substack{\nu' \in \mathbb{N}^p \\ |\nu'| < d - |\alpha|}} b_{\alpha,\nu'} X^{\nu'} \right).$$

Let us define the polynomial \mathcal{P}_{α} on \mathfrak{h}^* as

(4.28)
$$\mathcal{P}_{\alpha} = \sum_{\substack{\nu \in \mathbb{N}^p \\ |\nu| = d - |\alpha|}} a_{\alpha,\nu} x^{\nu} + \sum_{\substack{\nu' \in \mathbb{N}^p \\ |\nu'| < d - |\alpha|}} b_{\alpha,\nu'} x^{\nu'},$$

such that

$$(4.29) (L_{\beta} \circ \sigma)(\mathcal{P}) = \sum_{\alpha \in \mathbb{N}^{n-p}} \mathcal{P}_{\alpha}(-2\sqrt{-1}\pi\beta)X^{\alpha}.$$

Define the subset $\mathcal{A}_{\mathcal{P}}$ of multi-indexes in \mathbb{N}^{n-p} by

(4.30)
$$\mathcal{A}_{\mathcal{P}} = \{ \alpha \in \mathbb{N}^{n-p} \mid \mathcal{P}_{\alpha} \not\equiv 0 \}.$$

Since \mathcal{P} does not vanish identically on \mathfrak{g}^* , there exists a multi-index α in N^{n-p} such that \mathcal{P}_{α} does not vanish identically on \mathfrak{h}^* , so that the subset $\mathcal{A}_{\mathcal{P}}$ is not empty. Next define the variety $\mathcal{M}_{\mathcal{P}}$ of \mathfrak{h}^* by

(4.31)
$$\mathcal{M}_{\mathcal{P}} = \bigcap_{\alpha \in \mathcal{A}_{\mathcal{P}}} \{ \mathcal{P}_{\alpha} = 0 \}.$$

It is clear that $\mathcal{M}_{\mathcal{P}}$ is a non-empty Zariski closed subset of \mathfrak{h}^* which differs from \mathfrak{h}^* . Then we define $\mathcal{O}_{\mathcal{P}}$ as the non-empty Zariski open subset of \mathfrak{h}^* :

$$(4.32) \mathcal{O}_{\mathcal{P}} = \mathfrak{h}^* \setminus \mathcal{M}_{\mathcal{P}}.$$

On the other hand, for all linear forms l in \mathfrak{h}^* , define the subset $\mathcal{A}_{\mathcal{P},l}$ of $\mathcal{A}_{\mathcal{P}}$ by

(4.33)
$$\mathcal{A}_{\mathcal{P},l} = \{ \alpha \in \mathcal{A}_{\mathcal{P}} \mid \mathcal{P}_{\alpha}(l) \neq 0 \}.$$

Note that if l is in $\mathcal{O}_{\mathcal{P}}$, then $\mathcal{A}_{\mathcal{P},l}$ is not empty.

Finally, fix β in $\mathcal{O}_{\mathcal{P}}$. Let ξ be an element of maximal length in $\mathcal{A}_{\mathcal{P},\beta}$. We define a function ϕ_{ξ} in $C^{\infty}(G, H, \beta)$ as follows:

(4.34)

$$\phi_{\xi}(\exp(t_1X_1)\cdots\exp(t_nX_n)) = \chi_{\beta}(\exp(t_1X_1)\cdots\exp(t_pX_p))(-t_{p+1})^{\xi_{p+1}}\cdots(-t_n)^{\xi_n}.$$

 ϕ_{ξ} is a homogeneous function of degree $|\xi|$ in the variables t_{p+1}, \dots, t_n . Using Lemma 2 together with (4.29), we obtain that

$$(4.35) \qquad [(L_{\beta} \circ \sigma)(\mathcal{P})]^{\sharp}(\phi_{\varepsilon}^{\sharp})(0) = \mathcal{P}_{\varepsilon}(-2\sqrt{-1}\pi\beta)t_{p+1}!\cdots t_{n}!.$$

We have $[(L_{\beta} \circ \sigma)(\mathcal{P})]^{\sharp}(\phi_{\xi}^{\sharp}) \neq 0$. Hence $[(L_{\beta} \circ \sigma)(\mathcal{P})](\phi_{\xi}) \neq 0$. This shows that $(L_{\beta} \circ \sigma)(\mathcal{P}) \neq 0$.

4.2. A second theorem.

Theorem 2. Let G be a simply connected connected real nilpotent Lie group with Lie algebra \mathfrak{g} , H a connected closed commutative subgroup of G with Lie algebra \mathfrak{h} . Consider a weak Malcev basis passing through \mathfrak{h} . Then, if $\mathfrak{h} + \mathfrak{g}(l)$ is not lagrangian in \mathfrak{g} for generic l in $\Omega_{G,H,\beta}$, the algebra $\mathcal{D}(G,H,\beta)$ is not commutative, for all β in a non-empty Zariski open subset of \mathfrak{h}^* .

Proof. Let \mathfrak{g}_0 be an ideal of codimension one of \mathfrak{g} containing \mathfrak{h} and $G_0=\exp(\mathfrak{g}_0)$. One can suppose that $\tau_0=Ind_H^{G_0}\chi_\beta$ is of finite multiplicities. Under the notation of Section 2, we take $V=\mathfrak{g}^*$. So it is clear that $V^{gene}\cap\Omega_{G,H,\beta}\neq\emptyset$ for almost all β in \mathfrak{h}^* . Under the assumptions of the Theorem 2, the Pukanszky parametrization of the H-orbits in \mathfrak{g}^* , outlined in Section 2, gives a non-zero H-invariant polynomial $\mathcal P$ on \mathfrak{g}^* such that $\mathcal P\not\in S(\mathfrak{g}_0)$. Moreover, using (4.20)-(4.21), one can suppose that $\mathcal P$ is homogeneous. Then, from Lemma 3, $\sigma(\mathcal P)\not\in \mathcal U(\mathfrak{g}_0)+\mathcal U(\mathfrak{g})\mathfrak{a}_\beta$ and $(L_\beta\circ\sigma)(\mathcal P)$ is a non-zero element of $\mathcal D(G,H,\beta)$, for all β in $\mathcal O_{\mathcal P}$, as defined by (4.32). Thus, we apply Theorem 1 to get an element T of $\mathcal U(\mathfrak{g}_0,\mathfrak{h},\beta)$ such that $[(L_\beta\circ\sigma)(\mathcal P),L_\beta(T)]\neq 0$ in $\mathcal D(G,H,\beta)$.

4.3. The case where h is an ideal of g.

Corollary 2. Let G be a simply connected connected real nilpotent Lie group with Lie algebra \mathfrak{g} and H a connected closed normal subgroup of G with Lie algebra \mathfrak{h} . Then, for almost all β in \mathfrak{h}^* satisfying $\beta([\mathfrak{h},\mathfrak{h}]) = \{0\}$, the assertions (i), (ii) and (iii) of Section 2 are equivalent.

Proof. $(i) \Rightarrow (ii)$: Under the notation of Section 2, we take $V = [\mathfrak{h}, \mathfrak{h}]^{\perp}$ and we choose β in the fundamental layer of V to apply Theorem 2.

For
$$(ii) \Rightarrow (iii)$$
 and $(iii) \Rightarrow (i)$ see the end of Section 2.

5. Characterization of $\mathcal{D}(G,H,\beta)$ in terms of the algebra of $Ad^*(H)$ -invariant rational functions on $\Omega_{G,H,\beta}$

We shall denote by π_l the representation associated to $l \in \Omega_{G,H,\beta}/H$ by the Kirillov map and by $d\tilde{\mu}$ the image on $\Omega_{G,H,\beta}/H$ of the Lebesgue measure on $\Omega_{G,H,\beta}$.

If $\phi = \int_{\Omega_{G.H.\beta}/H}^{\oplus} \phi_{\pi_l} d\tilde{\mu}(l)$, then

(5.1)
$$D\phi = \int_{\Omega_{G,H,\beta}/H}^{\oplus} \Theta^{\tau}(D,l)\phi_{\pi_l} d\tilde{\mu}(l) \ \forall D \in \mathcal{D}(G,H,\beta)$$

where $\Theta^{\tau}(D,.)$ belongs to $\mathbb{C}(\Omega_{G,H,\beta})^H$, the algebra of $Ad^*(H)$ -invariant rational functions on $\Omega_{G,H,\beta}$. The application $\Theta^{\tau}: \mathcal{D}(G,H,\beta) \to \mathbb{C}(\Omega_{G,H,\beta})^H$ is an isomorphism between $\mathcal{D}(G, H, \beta)$ and a subalgebra of $\mathbb{C}(\Omega_{G,H,\beta})^{H}$. Actually Fujiwara proved that if there exists a common polarization for almost all linear forms on \mathfrak{g} whose restriction to \mathfrak{h} is β or if \mathfrak{h} is 1-dimensional, then Θ^{τ} is an isomorphism between $\mathcal{D}(G, H, \beta)$ and $\mathbb{C}[\Omega_{G,H,\beta}]^H$, the algebra of $Ad^*(H)$ -invariant polynomials on $\Omega_{G,H,\beta}$ [8]. This gives a partial answer to a question of Corwin and Greenleaf [5], also asked by Duflo (Problème 3 of [7]) in a more general context.

In the particular cases studied above, we have

Corollary 3. Let G be a connected simply connected real nilpotent Lie group with Lie algebra \mathfrak{g} and H a connected closed subgroup of G with Lie algebra \mathfrak{h} . The following assertions (a) and (b) are equivalent:

- for all β in \mathfrak{h}^* satisfying $\beta([\mathfrak{h},\mathfrak{h}]) = \{0\}$ when $(\mathfrak{g},\mathfrak{h})$ is a reductive pair,
- for almost all β in \mathfrak{h}^* satisfying $\beta([\mathfrak{h},\mathfrak{h}]) = \{0\}$ when \mathfrak{h} is commutative or \mathfrak{h} is an ideal in g.
- (a) $\mathcal{D}(G, H, \beta)$ is a commutative algebra.
- (b) $\mathcal{D}(G, H, \beta)$ is isomorphic, via Θ^{τ} , to a subalgebra of $\mathbb{C}(\Omega_{G,H,\beta})^H$.

Proof. (a) \Rightarrow (b): From Theorem 2 and Corollaries 1 and 2 if $\mathcal{D}(G, H, \beta)$ is commutative, then τ is of finite multiplicities, so that the results of [5] apply.

$$(b) \Rightarrow (a)$$
 is obvious.

Remark 5. Note that in the particular reductive case where H is one-dimensional (Remark 3) or if H is a normal subgroup of G (Corollary 2), then from [8], the image of $\mathcal{D}(G,H,\beta)$ under Θ^{τ} is, actually, the algebra $\mathbb{C}[\Omega_{G,H,\beta}]^H$ of $Ad^*(H)$ -invariant polynomials on $\Omega_{G,H,\beta}$.

6. Examples

In the following examples \mathfrak{g} will be the real nilpotent Lie algebra of dimension 7 generated by the vectors $\{X_i, 1 \le i \le 7\}$ with the following non-zero brackets:

$$[X_1, X_3] = X_2, [X_1, X_4] = X_3, [X_1, X_5] = X_4, [X_1, X_7] = X_6, [X_4, X_5] = X_6, [X_5, X_6] = X_2 \text{ and } [X_4, X_7] = -X_2.$$

Moreover, in the following examples, $\tau = Ind_H^G \chi_\beta$ is of infinite multiplicities.

Example 1. Take $\mathfrak{h} = \mathbb{R}X_1$ and $\beta = \xi_1 X_1^*$. Put $l = \sum_{i=1}^7 \xi_i X_i^*$ with $\xi_2 \neq 0$. Corollary 1 and Remark 3 apply in this situation. We take the Malcev basis ordered in the following way: $X_1, X_2, X_3, X_4, X_6, X_5$ and X_7 . This defines a Jordan-Hölder sequence of subalgebras of \mathfrak{g} . It happens that

$$Ad^{\star}(\exp(-tX_1))(\sum_{i=1}^{7} \xi_i X_i^{\star}) = \sum_{i=1}^{7} \xi_i(t) X_i^{\star}$$

with

$$\xi_1(t) = \xi_1, \quad \xi_2(t) = \xi_2, \quad \xi_3(t) = \xi_3 + t\xi_2,$$

$$\xi_A(t) = \xi_A + t\xi_3 + \frac{1}{2}t^2\xi_2, \quad \xi_6(t) = \xi_6,$$

$$\begin{array}{ll} \xi_1(t) = \xi_1, & \xi_2(t) = \xi_2, & \xi_3(t) = \xi_3 + t \xi_2, \\ \xi_4(t) = \xi_4 + t \xi_3 + \frac{1}{2} t^2 \xi_2, & \xi_6(t) = \xi_6, \\ \xi_5(t) = \xi_5 + t \xi_4 + \frac{1}{2} t^2 \xi_3 + \frac{1}{6} t^3 \xi_2, & \xi_7(t) = \xi_7 + t \xi_6. \end{array}$$

We parametrize the *H*-orbits by $u = \xi_3 + t\xi_2$. The orbit of ℓ is of dimension 1 and is exactly the set $\{\ell(u) = \sum r_i(\ell, u) X_i^{\star}, u \in \mathbb{R}\}$ where

 $r_1(\ell, u) = \xi_1, \quad r_2(\ell, u) = \xi_2,$

 $r_3(\ell, u) = u$, at this step, dimension of orbits passes from 0 to 1

$$r_4(\ell, u) = \frac{2\xi_2\xi_4 - \xi_3^2}{2\xi_2} + \frac{1}{2\xi_2}u^2, \quad r_6(\ell, u) = \xi_6,$$

$$r_4(\ell,u) = \frac{2\xi_2\xi_4 - \xi_3^2}{2\xi_2} + \frac{1}{2\xi_2}u^2, \quad r_6(\ell,u) = \xi_6,$$

$$r_5(\ell,u) = \frac{1}{6\xi_2^2}u^3 + \frac{2\xi_2\xi_4 - \xi_3^2}{2\xi_2^2}u + \frac{\xi_3^3 + 3\xi_2^2\xi_5 - 3\xi_2\xi_3\xi_4}{3\xi_2^2}, \quad r_7(\ell,u) = \frac{\xi_6}{\xi_2}u + \frac{\xi_2\xi_7 - \xi_3\xi_6}{\xi_2}.$$
 Thus, this gives us rational functions and then H -invariant polynomial functions

that are written in terms of the variables ξ_i . The elements of $\mathcal{U}(\mathfrak{g},\mathfrak{h},\beta)$ obtained by symmetrization are: X_1 , X_2 , $2X_2X_4 - X_3^2$, X_6 , $X_3^3 + 3X_2^2X_5 - 3X_2X_3X_4$ and $X_2X_7 - X_3X_6$.

We have $[X_3^3 + 3X_2^2X_5 - 3X_2X_3X_4, X_6] = 3X_2^3 \notin \mathcal{U}(\mathfrak{g})\mathfrak{a}_{\beta}$ and

 $[X_2X_7-X_3X_6,2X_2X_4-X_3^2]=2X_2^3\notin\mathcal{U}(\mathfrak{g})\mathfrak{a}_{\beta}.$ The left action of these elements on $C^{\infty}(G, H, \beta)$ gives elements of the algebra $\mathcal{D}(G, H, \beta)$, which is not commutative.

Example 2. Put $\mathfrak{h} = \mathbb{R}X_1 \oplus \mathbb{R}X_6$ with $\beta = \xi_1 X_1^* + \xi_6 X_6^*$ where $\xi_6 \neq 0$. Since \mathfrak{h} is commutative, we apply Theorem 2. The condition $\xi_6 \neq 0$ ensures the coincidence of the fundamental and generic layers. Analogous calculations as those of Example 1 give the following elements of $\mathcal{U}(\mathfrak{g},\mathfrak{h},\beta)$ whose images under L belong to $\mathcal{D}(G,H,\beta)$: X_6 , X_1 , X_2 , $X_2X_7 - X_3X_6$ and $2X_4X_6^2 - 2X_3X_6X_7 + X_2X_7^2$.

As in the previous example, the algebra $\mathcal{D}(G, H, \beta)$ is not commutative, since $[X_2X_7 - X_3X_6, 2X_4X_6^2 - 2X_3X_6X_7 + X_2X_7^2] = 2X_2^2X_6^2 \notin \mathcal{U}(\mathfrak{g})\mathfrak{a}_{\beta}.$

Example 3. Take $\mathfrak{h} = \mathbb{R}X_1 \oplus \mathbb{R}X_6$ with $\beta = \xi_1 X_1^* + \xi_6 X_6^*$ where $\xi_6 = 0$. Analogous calculations as those of Example 1 give the following elements of $\mathcal{U}(\mathfrak{g},\mathfrak{h},\beta)$: X_6 , X_1 , X_7 , X_2 and $2X_2X_4 - X_3^2$.

Since $[2X_2X_4 - X_3^2, X_7] = -2X_2^2 \notin \mathcal{U}(\mathfrak{g})\mathfrak{a}_{\beta}$, the algebra $\mathcal{D}(G, H, \beta)$ is not commutative. Here it is interesting to note that our situation is degenerated. However, we observe that in this example the previous constructions give a non-commutative family of elements in $\mathcal{D}(G, H, \beta)$.

References

- 1. A. Baklouti and J. Ludwig, Invariant differential operators on certain nilpotent homogeneous spaces. To appear in Monatshefte für Mathematik.
- P. Bernat, N. Conze, M. Duflo, M. Lévy-Nahas, M. Rais, P. Renouard, M. Vergne, Représentations des groupes de Lie résolubles. Monographies de la Société Mathématique de France, No 4, Dunod, Paris, 1972. MR 56:3183
- 3. L. Corwin and F. P. Greenleaf, A canonical approach to multiplicity formulas for induced and restricted representations of nilpotent Lie groups. Comm. Pure Appl. Math., 41, 1988. MR 90b:22011b
- L. Corwin and F. P. Greenleaf, Representations of nilpotent Lie groups and their applications, Part I. Cambridge Studies in Adv. Math., No 18, Cambridge Univ. Press, 1989. MR **92b:**22007
- L. Corwin and F. P. Greenleaf, Commutativity of invariant differential operators on nilpotent homogeneous spaces with finite multiplicity. Comm. Pure Appl. Math., 45, 1992. MR
- L. Corwin and F. P. Greenleaf, Spectral Decomposition of Invariant Differential Operators on Certain Nilpotent Homogeneous Spaces. J. Funct. Analysis, 108, 1992. MR 93j:22009
- M. Duflo, Open Problems in Representation Theory of Lie groups. Conference on "Analysis on homogeneous spaces", Katata, Japan, 1986.
- H. Fujiwara, Sur la conjecture de Corwin-Greenleaf. J. of Lie Theory, 7, 1997.
- F. P. Greenleaf, Harmonic analysis on nilpotent homogeneous spaces. Contemporary Mathematics, 177, 1994. MR 96e:22025

- F. P. Greenleaf, Geometry of coadjoint orbits and noncommutativity of invariant differential operators on nilpotent homogeneous spaces. Comm. Pure Appl. Math., 53, 2000. CMP 2000:15
- 11. R. Lipsman, Orbital parameters for induced and restricted representations. Trans. Amer. Math. Soc., 313, 1989. MR 90a:22008
- 12. L. Pukanszky, *Leçons sur les représentations des groupes*. Monographies de la Société Mathématique de France, No 2, Dunod, Paris, 1967. MR **36:**311

FACULTÉ DE TECHNOLOGIE À KYUSHU, UNIVERSITÉ DE KINKI, IIZUKA 820-8555, JAPON $E\text{-}mail\ address:\ fujiwara@fuk.kindai.ac.jp}$

Equipe Modal'X, Université Paris X, 200 Avenue de la République, 92001 Nanterre, France

EQUIPE DE THÉORIE DES GROUPES, REPRÉSENTATIONS ET APPLICATIONS, INSTITUT DE MATHÉMATIQUES DE JUSSIEU, UNIVERSITÉ PARIS VII, 2 PLACE JUSSIEU, 75251 PARIS CEDEX 05, FRANCE E-mail address: glion@math.jussieu.fr

Equipe Modal'X, Université Paris X, 200 Avenue de la République, 92001 Nanterre, France

EQUIPE DE THÉORIE DES GROUPES, REPRÉSENTATIONS ET APPLICATIONS, INSTITUT DE MATHÉMATIQUES DE JUSSIEU, UNIVERSITÉ PARIS VII, 2 PLACE JUSSIEU, 75251 PARIS CEDEX 05, FRANCE Current address, from 01/08/2000 to 31/05/2002: Department of Mathematics, Oklahoma State University, Stillwater, Oklahoma 74078-1058

E-mail address: smehdi@math.okstate.edu